Optimization of a target with a microchannel cooling structure using particle transport simulations

Qi Ding^{1,2}, Ulrich Rücker¹, Paul Zakalek¹, Johannes Baggemann¹, Jörg Wolters³, Jingjing Li¹, Yannick Beßler³, Thomas Gutberlet¹, Thomas Brückel¹, Ghaleb Natour^{2,3} ¹Jülich Centre for Neutron Science JCNS-HBS, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ²Faculty of Mechanical Engineering, RWTH Aachen University,52056 Aachen, Germany Centre for Neutron Science Central Institute of Engineering, Electronics and Analytics ZEA-1, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Motivation

- neutron scattering is a powerful tool for the investigations of material and soft matter
- HBS aims developing a compact accelerator-driven neutron source to deliver high brilliant neutron beams to a variety of neutron scattering instruments.

Within HBS project, a target with a sophisticated internally microchannel cooling was developed,

- Blistering problem due to high proton current (1 kW/cm²)
- mechanical stress due to temperature gradient.

Method

Monte Carlo code FLUKA 2020

Target design

- high power density Tantalum target $(100 \text{ kW}, 1 \text{ kW/cm}^2)$
- Area: 10 cm x 10 cm
- Mass: approx. 1 kg

Entire Target including water Beamstop and supply connection

A sketch of a complete target including water Beamstop

Target properties

- Proton flux is homogenous
- energy distribution is homogenous
- Bragg peaks appear in the Beamstop

- Only 6% of protons accumulates in the tantalum target
- 93.8% of protons stops in the Beamstop

- Most (p , n) reactions happens at the beginning of the target Almost neutrons are
- produced by the metal / target

JÜLICH Forschungszentrum

Lifetime estimation

- (a) DPA induced by protons
- (b) DPA induced by neutrons
- the maximum values of the proton-induced DPA mainly concentrates on at the end of target
- the peaks of neutrons-induced damage appear at the beginning of the target

Table 1 Estimation of the minimum target lifetime

	Annual does [dpa/fpy]		Minimum target
	Reference	Calculated	lifetime[years]
	values	values	
Protons-induced	11 [1,2]	1.985±0.007	5.54
Neutrons-induced	0.14 [3]	0.162±0.017	0.86

- 1 T.S. Byun, S.A. Maloy, J. Nucl. Mater 377(1), 72 (2008).
- 2 J. Chen, H. Ullmaier, etc, J. Nucl. Mater 298(3), 248 (2001).
- 3 J. Chen, G. Bauer, etc, J. Nucl. Mater 318, 56 (2003).

Conclusions

- This design can significantly reduce the risk of blistering problem.
- has a homogeneous energy deposition without heat spots except slightly fluctuation between the end segments.
- the minimum service lifetime of the target is estimated to 1 year.

Outlook

- Further ANSYS simulations are needed to check the mechanical properties.
- Target prototype manufacturing and examination of critical heat flux under high electric beam